45 research outputs found

    Crosswalk of Human Reliability Methods for Offshore Oil Incidents

    Get PDF
    PresentationHuman reliability analysis (HRA) has long been employed in nuclear power applications to account for the human contribution to safety. HRA is used qualitatively to identify and model sources of human error and quantitatively to calculate the human error probabilities of particular tasks. The nuclear power emphasis of HRA has helped ensure safe practices and risk-informed decision making in the international nuclear industry. This emphasis has also tended to result in a methodological focus on control room operations that are very specific to nuclear power, thereby potentially limiting the applicability of the methods for other safety critical domains. In recent years, there has been interest to explore HRA in other domains, including aerospace, defense, transportation, mining, and oil and gas. Following several high profile events in the oil and gas industry, notably the Macondo well kick event in the U.S., there has been a move to use HRA to model and reduce risk in future oil drilling and production activities. Organizations like the Bureau of Safety and Environmental Enforcement are adapting the risk framework of the U.S. Nuclear Regulatory Commission for offshore purposes. In this paper, we present recent work to apply HRA methods to the analysis of offshore activities. We present the results of retrospective analyses using three popular HRA methods: SPAR-H, Petro-HRA, and CREAM. With the exception of Petro- HRA, these HRA methods were developed primarily for nuclear power event analysis. We present a comparison of the findings of these methods and a discussion of lessons learned in applying the methods to offshore events. The objective of this paper is to demonstrate the suitability of HRA methods for oil and gas risk analysis but also to identify topics where future research would be warranted to tailor these HRA methods

    Retrospective Application of Human Reliability Analysis for Oil and Gas Incidents: A Case Study Using the Petro-HRA Method

    Get PDF
    Human reliability analysis (HRA) may be performed prospectively for a newly designed system or retrospectively for an as-built system, typically in response to a safety incident. The SPAR-H HRA method was originally developed for retrospective analysis in the U.S. nuclear industry. As HRA has found homes in new safety critical areas, HRA methods developed predominantly for nuclear power applications are being used in novel ways. The Petro-HRA method represents a significant adaptation of the SPAR-H method for petroleum applications. Current guidance on Petro-HRA considers only prospective applications of the method, such as for review of new systems to be installed at offshore installations. In this paper, we review retrospective applications of Petro-HRA and analyze the Macando Oil Well-Deepwater Horizon accident as a case study

    The Measure of Human Error: Direct and Indirect Performance Shaping Factors

    Get PDF
    The goal of performance shaping factors (PSFs) is to provide measures to account for human performance. PSFs fall into two categories—direct and indirect measures of human performance. While some PSFs such as “time to complete a task” are directly measurable, other PSFs, such as “fitness for duty,” can only be measured indirectly through other measures and PSFs, such as through fatigue measures. This paper explores the role of direct and indirect measures in human reliability analysis (HRA) and the implications that measurement theory has on analyses and applications using PSFs. The paper concludes with suggestions for maximizing the reliability and validity of PSFs

    Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

    Get PDF
    Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems

    Extracting and Converting Quantitative Data into Human Error Probabilities

    Get PDF
    This paper discusses a proposed method using a combination of advanced statistical approaches (e.g., meta-analysis, regression, structural equation modeling) that will not only convert different empirical results into a common metric for scaling individual PSFs effects, but will also examine the complex interrelationships among PSFs. Furthermore, the paper discusses how the derived statistical estimates (i.e., effect sizes) can be mapped onto a HRA method (e.g. SPAR-H) to generate HEPs that can then be use in probabilistic risk assessment (PRA). The paper concludes with a discussion of the benefits of using academic literature in assisting HRA analysts in generating sound HEPs and HRA developers in validating current HRA models and formulating new HRA models
    corecore